A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate
نویسندگان
چکیده
منابع مشابه
A matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملa matrix lsqr algorithm for solving constrained linear operator equations
in this work, an iterative method based on a matrix form of lsqr algorithm is constructed for solving the linear operator equation $mathcal{a}(x)=b$ and the minimum frobenius norm residual problem $||mathcal{a}(x)-b||_f$ where $xin mathcal{s}:={xin textsf{r}^{ntimes n}~|~x=mathcal{g}(x)}$, $mathcal{f}$ is the linear operator from $textsf{r}^{ntimes n}$ onto $textsf{r}^{rtimes s}$, $ma...
متن کاملA Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization
For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods sequentially minimize a Lagrangian function subject to linearized constraints. These methods converge rapidly near a solution but may not be reliable from arbitrary starting points. The well known example MINOS has proven effective on many large problems. Its success motivates us to propose a glo...
متن کاملA globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points
The LP-Newton method for constrained equations, introduced some years ago, has powerful properties of local superlinear convergence, covering both possibly nonisolated solutions and possibly nonsmooth equation mappings. A related globally convergent algorithm, based on the LP-Newton subproblems and linesearch for the equation’s infinity-norm residual, has recently been developed. In the case of...
متن کاملA Globally Convergent Stabilized Sqp Method: Superlinear Convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/386030